

Background on Idle Reduction

- Recent CARB study reported HDD trucks contribute 30% of NOx and 65% of PM while comprising only 2% of the on-road fleet¹.
- A significant portion of the duty cycle for Class 8 trucks consists of extended idle
- Truckers idle to power sleeper cab a/c, heat, appliances, etc.
- On average, these trucks idle ~ 30 to 40% of their duty cycle or 6-10 hrs/day/truck, 1500-3000 hrs/truck/yr.

1. Analysis of HDD Truck Activity and Emissions Data, Tau Huai, et al.

Eligibility Under SAFETEA-LU

- SAFETEA-LU expanded CMAQ eligibility to Advanced Truck Stop Electrification and Diesel Retrofits
- Idle reduction projects must be located w/n or in proximity to and benefiting the nonattainment or maint. area.
- For on-board APUs or DFH, the vehicle must travel w/n or in proximity to a primarily benefiting the nonattainment or maint. area.
- Operating assistance is not an eligible activity for TSE projects under CMAQ, only capital costs.
- General requirement to assess emission benefits of the project

Definitions

- Long Duration Truck Idling Emission: the operation of the truck's propulsion engine when not engaged in gear for a period of 15 consecutive minutes, except for routine stoppages, traffic, etc.
- <u>Idle Reduction Technology</u>: consists of the use of alternative energy source in lieu of the main truck engine for the purposes of reducing long duration truck idling, may be mobile or stationary.
- Class 8 Truck: means a truck with a gross vehicle weight rating (GVWR) of 33,001 pounds and over. GVWR includes weight of the truck, payload, fuel and driver.

- TSE involves electrifying truck parking spaces typically at large truck stop facilities without modifications to the truck.
- Utilizes power from the power gird to operate on-board truck equipment.

To determine the emissions (g/day) from an individual truck prior to the use of an idle reduction technology use the following equation:

Emissions Per Day = EF_{Base} * AL_{IRT}

Where:

EF_{Base} = Truck baseline emission factor (NOx or PM in g/hr)

AL_{IRT} = Estimated hours of use of idle reduction technology (hr/day)

Quantification Of Emission Reductions

- Step 1. Determine the historical idling activity of the trucks associated with the truck parking spaces involved in the project.
 - 2. From the number above, determine the number of hours the trucks are idled per day for an avg. annual weekday.
 - 3. Select the emission factor for the criteria air pollutant or precursor.

Quantification Of Emission Reductions

• NOx Emission Factor For Long Duration Idling For Heavy Duty Diesel Vehicles²:

Year	NOx Emission Factor g/hr
2002 – 2030	135 g/hr

2. Appendix B, Guidance for Quantifying and Using Long Duration Truck Idling Emission Reductions in SIPs and Transportation Conformity; EPA OTAQ

Quantification Example

Estimate the long duration idle NOx emission reduction for 2007 from a Class 8 truck stop using TSE with:

- 100 truck stop spaces
- Est. historic average 10 hrs/day idling activity
- You have estimated that the project will reduce 8 of the 10 hours of idling.

Quantification Example

- Therefore, the average daily emissions reduced is:
 135 gm/hr * 8 hours/day = 1080 grams/day or 2.38 lbs/day
- Last, sum all emission reductions for the project:
 100 electrified spaces * 2.38 lbs/day = 238 lbs/day

1 gram = .002205 lbs

- Mobile idle reduction technology usually consists of an after market Auxiliary Power Unit (APU) that allows the truck to shut down.
- APUs can be diesel powered, battery or combinations of both
- Provide a/c, heat, power for sleeper cab appliances as well as battery charging and start assist for the main engine
- Typically use 0.2 gal/hr vs. 1.0 gal/hr for main diesel engine

Quantification Of Emission Reductions

•To determine the net emissions reductions for long duration truck idling use the following equation:

 $NER = (EF_{BASE} * (AL_{RT} / CF_{GL/LBS})) - (EF_{RT} * HP (AL_{RT} / CF_{GL/LBS}))$

Truck Idling Emissions **APU Emissions** Where:

NER = **Net Emission Reduction**

Truck baseline emission factor (NOx or PM in g/hr EF_{BASE} =

Estimated hours of use of the Idle Reduction Tech (hr/day) $AL_{IRT} =$

CF_{GL/LBS} = Conversion factor for grams to pounds which is 454

Idle reduction tech emission factor (NOx or PM in g/bhp-hr)

EF_{IRT} = HP = Average daily horsepower load (range 4-8 hp) depending on technology

 $AL_{IRT} =$ Estimated hours of use of the idle reduction technology (hr/day)

Quantification Of Emission Reductions

- Step 1. Determine the historic idling activity for the truck involved in the project.
 - 2. Select the emission factor for the criteria pollutant or precursor.
 - 3. Multiply the emission factor in Step 2 by the number of hours per day the idle reduction technology is estimated to be used.
 - 4(a). Determine the emission factor for the mobile idle reduction technology .
 - 4(b). Multiply the emission factor from 4(a) by the avg. horsepower load of the APU.

Quantification Of Emission Reductions

Step 4(c). Multiply the g/hr factor by the number of operation hours (per day) it is estimated to be used.

- 5. Determine the net emission reduction.
- 6. Sum all emission reductions for the project.

Quantification Example

Estimate the long-duration NOx emission reductions for 100 Class 8 trucks in 2007 using an APU equipped a with 2003 Kubota engine. The vehicle will use this technology 7 hours per day:

- We are evaluating for NOx, so the truck emission factor would be 135 g/hr
- 135 g/hr * 7 hours = 945 g/day/truck
- '03 Kubota engine is certified NOx emission level in 40 CFR 89 is 4.7 g/bhp-hr.

• Particulate Emission Factors For Long Duration Idling For Heavy Duty Diesel Vehicles³:

Truck Model Year	PM _{2.5} /PM ₁₀ Emission Factor g/hr
2006 and earlier	3.68
2007 and later	0.33

3. Appendix C, Guidance for Quantifying and Using Long Duration Truck Idling Emission Reductions in SIPs and Transportation Conformity; EPA OTAQ

Quantification Example

- Convert the APU engine NOx emission level into g/h by multiplying by the avg. hp load factor. In this case, it is 5hp for summer week days:
 - 4.7 g/bhp-h x 5hp = 23.5 g/hr
- Multiply the g/hr emission factor by the number of hours/day the technology is estimated to be used:
 23.5 g/hr x 7 hrs = 164.5 g/day
- Determine the net emission reduction [Truck_{em} APU_{em}]:
 945 g/day 164.5 g/day = 780.5 g/day or 1.72 lbs/day

